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Abstract—Traffic flow rate information obtained from loop 

detectors is important for many traffic management applications. 

Given the installation and maintenance costs of such detectors is 

high, many transportation agencies are shifting to probe vehicle 

based traffic data. However, estimating traffic flow rates from 

probe vehicle data remains critical. This paper attempts to 

estimate traffic flow rates by utilizing a well-calibrated 

fundamental diagram in combination with the traffic speed 

information obtained from the probe vehicle.  Different single-

regime fundamental diagrams and aggregation intervals of the 

probe vehicle data are investigated in search of the combination 

that provides the most accurate estimate of flow rates. The 

results suggest that flow rates are best estimated by using 

fundamental diagram developed by Van Aerde. Moreover, 

estimates of flow rates during congested periods are found to be 

more accurate than free-flow periods. 

Keywords—probe vehicle, fundamental diagram, flow 

estimation 

 

I. INTRODUCTION 

 Accurate and reliable estimation of traffic flow rates are 
important for a number of applications in traffic management 
and control, e.g., assessing the freeway quality of service, 
examining the vehicle arrival rate for evaluating shockwaves 
due to drop in capacity or incidents, optimization of signals at 
intersections etc. Traditionally, traffic information collected 
from loop detectors or radar sensors at a fixed point are used 
for measuring traffic flow rates. Given the installation and 
maintenance costs of such devices are high, many 
transportation agencies are focusing on obtaining traffic 
information from probe vehicle (PV) data generated from 
cellphones or navigation devices [1]. Another advantage of 
using PV data is the superiority in coverage as traffic 
information along the entire road network can be collected.  

 The data collected from PV consist of the location of the 
PV and their spot speeds taken at short time intervals, e.g. 
every second or fraction of a second, which enables 
reconstructing the trajectory of the vehicles. Such data have 
been used for a variety of purposes, e.g., queue length 
estimation at signalized intersections [2, 3], analysis of travel 
time [4] and traffic state estimation [5]. Determining traffic 
flow rates from the PV data on a real time basis is a 
challenging process as the penetration rate of PVs can be 
relatively low. However, this challenge can be tackled by 

utilizing a fundamental diagram (FD) in combination with the 
traffic speed information obtained from PV data. Besides the 
recent work of [6], estimation of traffic flow rates from PV 
data has not received much attention.  

 A FD provides a relationship among the macroscopic 
traffic parameters, namely: speed (u), volume (q) and density 
(k). Given a robust and well-calibrated FD corresponding to 
the road segment of interest, one can estimate the volume of 
traffic corresponding to the speed obtained from PV. This 
approach of estimating traffic flow rates heavily depends on 
the goodness of fit of FD to the traffic data and the 
aggregation interval of the PV data.  This paper focuses on 
comparing the estimates of traffic flow rates obtained from a 
variety of singe-regime FDs and aggregation intervals of the 
PV data. The FDs considered in this paper are: 1) Greenshield, 
2) Underwood, 3) Northwestern. and 4) Van Aerde. The 
aggregation intervals of the PV data considered are: 1) 5 
minutes, 2) 10 minutes, and 3) 15 minutes. Other FDs and 
aggregation intervals are beyond the scope of this paper. The 
accuracy of the estimated traffic flow rate from the different 
combinations of FDs and aggregation intervals of the PV data 
are reported in terms of relative percentage errors. 

The remainder of the paper is organized as follows. 
Following this introductory section, review of literature is 
presented. This is followed by discussion on the 
methodological approach and the data used for the analyses. 
Finally, the results are discussed, conclusions are drawn, and 
insights on future works are presented. 

 

II. LITERATURE REVIEW 

The earliest concept of probe vehicle (PV) was perhaps 
introduced by Wardrop and Charlesworth [7]. They recorded 
the number of vehicles being passed by the moving vehicle and 
passing the moving vehicle. They also recorded the number 
vehicles in the other direction and the travel time of the moving 
vehicle. All of which were used to estimate flow and speed. 

Several decades later, as PV technology becomes available, 
a handful of studies have been performed in estimating flow 
from PV data. Neumann et al [6] applied the Van Aerde [8]  
fundamental diagram (FD) to estimate hourly traffic flow using 
the speed of PV as an input. They then extended the study by 
adding Bayesian statistics to the analyses [9]. Further research 



looked into flow estimation by considering the spacing 
between the PV and the vehicle in front of it [5]. 

PV based studies have also been used for various analyses 
of traffic conditions such as estimating queue length and travel 
time. The trajectories of the PV combined with the shockwave 
theory [10, 11] are used to estimate queue lengths [12-15]. 
While other research have looked into segment travel time 
and/or speed for a case study in Israel [16] and by applying 
Markov chain technique to NGSIM data [17]. Instead of 
focusing on a single attribute, Hiribarren and Herrera [18] and 
Nantawichit et al. [4]  study estimation of several traffic 
attributes such as travel time, speed and/or queue lengths 
combined. 

Using taxis as PVs, Donovan and Work [19] studied the 
resiliency of New York city transportation network by 
considering the PVs travel time before and after hurricane 
Sandy. In an experiment called Mobile Century, a team from 
UC Berkeley developed a traffic monitoring system based on 
PV data [20]. 

Transportation agencies are looking at alternative sources 
of traffic data. The Ohio Department of Transportation 
switched to third party traffic data instead of loop detectors for 
traffic management purposes [1]. Third parties are private 
companies that collect PV data and selling them to the public 
and private agencies. The data may come from a variety of 
sources such as fleet vehicles. In the future it is expected that 
more transportation agencies will shift from loop detectors to 
PVs as a source of traffic data. 

This paper aims at estimating volume of traffic from FD by 
using speed obtained from PV. Similar concept has previously 
been applied by [6]. However, their work had critical limitation 
as they used a typical FD for roads of the same type, e.g., same 
FD for all freeways. This fails to capture the spatial variations 
of traffic, e.g., difference in proportion of HGVs, presence or 
absence of on-off ramps and bottlenecks that restrict traffic 
flow. Moreover, they considered fitting only one type of FD 
which is the Van Aerde FD. To complement this limitation, 
four different single-regime FDs were applied by fitting them 
to traffic data corresponding to the same corridor where the PV 
data was collected. In addition, the PV data used in this paper 
was aggregated at a 5 minute interval which provides better 
temporal resolution. 

 

III. METHODOLOGY 

A FD describes the relationship between traffic speed (u), 

flow (q) and density (k). The methodology propose in this 

paper utilize the speed-flow relationship, i.e., flow (q) is 

estimated when speed (u) is known. Four different single-

regime FDs are considered, namely Greenshield [21], 

Underwood [22], Northwestern [23] and VanAerde [8], and 

the estimated flow (q) for a given speed (u) obtained from 

each of the FDs are compared. Only single-regime FDs are 

used in this paper so that the problem of continuity at the 

boundary of the regimes of multi-regime FDs is avoided. 

The speed-density relationship of the four FDs and their 

transform functions are listed in Table I. From the speed-

density relationships and the regression analysis of the 

transform functions other relationships such as the speed-flow 

and flow-density can be estimated. 

Table I.  FUNDAMENTAL DIAGRAM RELATIONSHIP 

Model Speed-Density 

Relationship 

Regression 

Green-

shield 𝑘 = 𝑘𝑗 (1 −
𝑢

𝑢𝑓
) 𝑘 = 𝑘𝑗 −

𝑘𝑗

𝑢𝑓
𝑢 

Under-

wood 
𝑘 = 𝑘𝑜 ln (

𝑢𝑓

𝑢
) 𝑘 = 𝑘𝑜 ln 𝑢𝑓 − 𝑘𝑜 ln 𝑢 

North-

western 𝑘 = 𝑘𝑜 (2 ln
𝑢𝑓

𝑢
)

1
2⁄

 
𝑘2 = 2𝑘𝑜

2 ln 𝑢𝑓 − 2𝑘𝑜
2 ln 𝑢 

Van 

Aerde 
𝑘 =

1

𝑐1 +
𝑐2

𝑢𝑓 − 𝑢
+ 𝑐3𝑢

 

 

𝑛 =
2𝑢𝑐−𝑢𝑓

(𝑢𝑓−𝑢𝑐)
2 , 

𝑐2 =
1

𝑘𝑗(𝑛+
1
𝑢𝑓⁄ )

 , 

𝑐1 = 𝑛𝑐2, 

𝑐3 =

−𝑐1 +
𝑢𝑐
𝑞𝑐
−

𝑐2
𝑢𝑓 − 𝑢𝑐

𝑢𝑐
 

In Table I 𝑢𝑓 is free-flow speed, 𝑢𝑐  is speed at capacity, 

𝑘𝑜is optimum density and 𝑘𝑗 is jam density. To calculate the 

flow rate (q) in terms of speed, replace k which is on the left 

hand side of the speed-density relationships with the ratio of q 

divided by u. Simple algebraic manipulations transform the 

equations in Table I  to q-u relationships. 

The typical PV data consists of speed and location of the 

vehicle itself. Given the speed (u) of PV, this method would 

then refer to the reference speed-flow relationship of the FDs 

to estimate the flow rate (q).  

In this paper, the estimates of the traffic flow rates from 

the different FDs are compared with the traffic flow rate 

measurements obtained from loop detectors which are 

considered to be the ground truth measurement. Percent error 

(PE), mean absolute percentage error (MAPE) and root mean 

square error (RMSE) are used as performance indicators for 

the deviation of the estimated flow rate from the ground truth 

measurements as formulated (1)-(3). 

𝑃𝐸𝑖 =
𝐹𝑖 − 𝑂𝑖
𝑂𝑖

× 100% (1) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝐹𝑖 − 𝑂𝑖
𝑂𝑖

|

𝑛

𝑖=1

× 100% (2) 

𝑅𝑀𝑆𝐸 =
1

𝑛
√𝑛∑(𝐹𝑖 − 𝑂𝑖)

2

𝑛

𝑖=1

 

(3) 

 

where:  Fi is the i
th

 estimate value  

  Oi is the i
th

 observe value  

n is the number of samples 



IV. CASE STUDY 

The study site is a corridor along I-880 northbound located 
near Union City between Stevenson Blvd. and Winton Ave. 
ramps in the San Francisco bay area. PV data were collected 
from 10:00am to 6:00pm on Friday February 8

th
 2008. This 

data collection effort was a part of the Mobile Century project 
[20]. In this experiment, 165 drivers were recruited to drive PV 
along the study site. The PV were equipped with GPS-enabled 
cell phones which on average transmitted data every 3 seconds. 
Data collected were latitude, longitude and timestamp. Post 
processing by the Mobile Century team added speed and 
postmile to the PV data. The penetration rate of PV is in the 
range of 2-5% depending on time of the day. 

Even though the original Mobile Century project covered a 
considerably large corridor, the penetration rate of PV was low 
in the afternoon hours. In addition, a crash was reported during 
mid-morning between postmile 26 and 27. Therefore, a smaller 
segment around postmile 25 which experienced a recurrent 
congestion was selected for this study. Fig. 1 illustrates the 
study area’s PV trajectories, several loop detector locations 
which are identified by the horizontal dotted lines and the 
resulting shockwave speed w from the mid-morning crash 
indicated by dotted red line. w is the slope of the linear 
regression line for PV that encountered speed decrease. 

 

 

Loop detector data, corresponding to the segment postmile 
25 where PV data were collected, were retrieved from 
California Department of Transportation website [24]. The 
downloaded data included flow and speed for each lane 
aggregated every 5-min for thirty four days starting from Jan 
6

th
 to Feb 9

th
 2008. These data were aggregated across all lanes 

and were used to develop the four FDs as shown in Fig. 2. In 
this figure, each line represented each FDs with the observed 
data in the background. Of the three relationships, the most 
relevant to this research is Fig. 2b which is the speed-flow 
relationship. 

To better understand the proposed methodology, a thirty 
minute time period analyses of the loop detector and PV data 
are shown in Fig. 3. In Fig. 3a, the location of the loop detector 
nearest to postmile 25 is identified as the horizontal dotted line. 
Each PV data entries are identified as circles with linear lines 
connecting them. Each color and line indicate a unique PV. 

Speed data from loop detector and PV are displayed on Fig. 
3b. In this figure, the speeds for each PV data entry are shown 
as circles. Again, each color indicates a unique PV. The 
average speeds from PV aggregated every 5-min are shown as 
diamond shapes while the average speeds from loop detector 
are shown as squares with intersecting diagonals. These 
average speeds from PVs are entered into the FDs to estimate 
the corresponding flow rates. 

 
 

 

 

V. RESULTS 

As discussed previously, the estimation of traffic flow rate 
is conducted by utilizing different FDs and traffic speed 
obtained from PV data. Fig. 4 shows traffic speed information 
obtained from the PV data aggregated every 5-, 10- and 15- 
minutes. The deviations of speed of the PV aggregated in 5-, 
10- and 15-minutes in terms of average PE were found to be 

 

Fig. 1.  Probe vehicle trajectories 

 

Fig. 2.  Different models of fundamental diagrams 

 

Fig. 3.  Speed data from probe vehicles (5-min aggregation) 



10%, 9%, and 13%, respectively. In general, the pattern of the 
speed profiles of the loop detectors is well maintained by the 
speed obtained from the PV data. 

 

 
Fig. 5 shows the estimates of traffic flow rates from 

different FDs and aggregation intervals of the PV speeds by 
time of the day. It is noticed that the deviations of the estimated 
flow rates from the observed values are lower when volume is 
at capacity or close to capacity while it is higher when traffic is 
mild. Moreover, it is observed that the Greenshield, 
Underwood and Northwestern models tend to underestimate 
flow rates during medium flow rates. On the other hand, 
Greenshield model tends to overestimate the flow rate when 
flow rates are near capacity. Overall, Van Aerde model 
provides reasonable estimate of traffic flow rates with good 
estimates during periods of high flow rates with slight under 
estimation during medium flow rates. 

The baseline calculation of 5-min is then aggregated into 
10- and 15-min flow rate. The difference in flow for the time 
aggregations are shown in Fig. 5a (5-min), b (10-min) and c 
(15-min). Overall it is observed that there is less fluctuation as 
the time aggregation increases from 5 to 15 minutes. The 
increase in time aggregation acted as a smoothing factor that 
reduced variability. 

Estimation errors for each set of time aggregation and FD 
are examined by using different performance indicators (1)-(3), 
i.e., PE, MAPE and RMSE. Fig. 6 shows a summary of the 
magnitude of the deviations of the estimated flow rates from 
the observed flow rates in terms of PE for each FD and 
aggregation interval. The figure reveals that the magnitudes of 
the errors from Greenshield, Underwood and Northwestern 
models are high and contain significant amount of outliers. 
Moreover, the errors from Greenshield and Underwood models 
show no significant improvements with increase in aggregation 
interval of the PV data while Northwestern show significant 
reduction in estimation errors with an increase in aggregation 
intervals. On the other hand, the size of the boxes and whiskers 
of PE for Van Aerde model are smaller than the other models 
which suggest that the variability in the errors of estimates of 
the traffic flow rates is smaller. Table II lists MAPE, RMSE, 
average PE and standard deviation of PE for each FD model 
and aggregation interval. Overall, VanAerde model of FD 

performs the best in terms of having the smallest magnitude 
and variation of errors in terms of MAPE, RMSE, and average 
and standard deviation of PE. 

 

 

 

 

 

 

 Fig. 4.  Probe vehicle and loop detector speed comparison  

 

Fig. 5.  Flow rate estimation from different FDs and 

aggregation intervals 

 

Fig. 6.   Distribution of percentage error for different FDs and 

aggregation intervals 



Table II  SUMMARY OF ESTIMATION ERRORS FOR 

DIFFERENT FDs AND AGGREGATION INTERVALS 

FD models 
Aggregation 

interval 

MAPE 

(abs %) 

RMSE 

(vphpl) 

Avg. 

Error 

Std. 

Dev. 

Greenshield 

5-min 12.5 189 -2.1 17.1 

10-min 11.1 169 -2.2 15.2 

15-min 11.1 168 -2.2 14.7 

Underwood 

5-min 11.7 178 -8.9 14.6 

10-min 11.3 174 -9.0 13.5 

15-min 10.9 167 -9.0 12.9 

Northwestern 

5-min 8.7 130 -5.4 10.4 

10-min 7.1 107 -5.5 8.2 

15-min 6.8 103 -5.5 7.7 

Van Aerde 

5-min 6.4 98 -2.9 8.1 

10-min 5.3 83 -3.0 6.2 

15-min 5.2 79 -3.0 6.2 

The distribution of the errors corresponding to the speed of 
the PV aggregated at 5-, 10- and 15-minutes is shown in Fig.7 . 
With increase in aggregation intervals the estimation errors are 
observed to decreased. The accuracy of flow rates estimated 
from Greenshield and Northwestern models are low both 
during low and high speed periods with relatively better 
accuracy during the transition from low to high speed periods. 
The estimation error for Underwood model is fairly stable for 
most of the speed range, however, excessively large errors 
were observed during high speed periods. For a given PV 
speed, Van Aerde model provides the least error compared to 
the other models. 

 

 

In general, traffic flow rates are estimated more accurately 
during periods of low speed when compared to free-flow 
periods. This can be explained by the fact that traffic flow can 
have a wide variation during free-flow period. An extreme 
example would be a very low traffic flow compared to traffic 
flow during pre-breakdown period, all of which can occur 
during free-flow but vary in flow significantly. This finding 
was similar to a previous study [6]. During congestion, where 
speed was lower, the deviations are smaller than of free-flow 
period. This result is expected because there is less traffic flow 
variation when roads are congested. Vehicles tend to be closer 
together and have a more uniform flow making the flow rates 
more predictable. Considering the fact that the value or 
importance of traffic information during congested periods is 
higher than during free-flow periods, e.g., prediction of flow-
break down, the proposed methodology seems to provide a 
promising result that can be integrated with other traffic 
applications for better management of traffic. 

 

VI. CONCLUSION 

Accurate estimation of traffic flow rate is critical for traffic 
management applications. With the wide deployment of PVs, 
estimating traffic flow rate from PV data is becoming vital. 
This study shows that the speed of PV can be used to estimate 
the traffic flow rate provided that a valid FD is available. 
Considering that there are a number of FDs to choose from, 
identifying the one which provides the best estimate of traffic 
flow rate corresponding to a given PV speed is very critical. In 
this regard, this paper provides the following findings: 

 Out of the four single-regime FDs considered, Van Aerde 

model seems to provide a better result when compared to 

the other three models. 

 With increasing aggregation interval of the  PV data, 

better estimates of traffic flow rates can be obtained  

 Traffic flow rates are more accurately estimated during 

congested traffic conditions compared to free-flow 

conditions. Considering the need for accurate estimate of 

traffic flow during free-flow condition is less critical, the 

results of the proposed methodology can be integrated 

with other traffic management applications. 

The methodology presented in this paper heavily depends 
on the applied FD which itself is constructed from transformed 
traffic variable. Therefore, inaccuracy in the FD affects the 
traffic flow rate estimation. Moreover, the speed of traffic is 
not affected until volume reaches near capacity making the 
estimation of volume during free flow times challenging. The 
case study lacks the regime where traffic flow is very low.  
Considering the temporal coverage of the PV data was limited, 
testing the methodology on a larger PV datasets would be 
desirable. To overcome these limitations, data-driven 
approaches which take the pattern of traffic into consideration 
will be applied in the future to improve the estimation of flow 
rates from PV speed. 

 

 

Fig. 7.   Flow rate estimation error vs speed of traffic 
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