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Abstract—Classification of vehicles is one of the most 
important tasks in intelligent transportation systems (ITS). 
While there are various types of sensors for measuring vehicle 
characteristics, this paper is focused on an image-based vehicle 
classification system. Most traditional approaches for image-
based vehicle classification are computationally extensive and 
typically require a large amount of data for model training. This 
paper investigates whether it is possible to transfer the learning 
of a highly accurate pre-trained model for classifying truck 
images based on body type. Results show that using a pre-
trained model to extract low-level features of images increases 
the accuracy of the model significantly, even with a relatively 
small size of training data. Furthermore, a convolutional neural 
network (CNN) is shown to outperform other types of models to 
classify trucks based on the extracted features. 
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I. INTRODUCTION  

Most traffic management methods are highly dependent 
on the accuracy of the sensing mechanism and estimation of 
traffic parameters. Monitoring traffic flow is necessary for 
managing the performance of traffic operations. In particular, 
classifying vehicles into distinct categories (e.g., in the USA 
FHWA’s 13-class scheme) is essential for freight planning, 
highway design and maintenance, traffic operations, and 
system management. There are already a number of vehicle 
detection technologies, such as magnetic loop detectors [1], 
acoustic sensors [2], lasers [3], radar [4], and image/video [5] 
in place to detect vehicle axles and other physical 
characteristics needed for a classification algorithm. Vision-
based systems are one of the least disruptive methods for 
monitoring traffic and have relatively a low cost of 
maintenance in comparison to other technologies. 

The focus of this paper is to investigate how deep neural 
networks can be designed and employed to classify vehicles 
based on image data. Rather than solving the typical 
classification problem of categorizing vehicles (e.g., into cars, 
small trucks, large trucks, etc.), this study is on detecting truck 
body types. More specifically, the main objective is to 
distinguish between two types of trailers/trucks: a truck 
carrying an intermodal container versus a dry or enclosed van. 
In most urban areas in the USA, especially those with 
intermodal ports, these two body types constitute a large 
percentage of all FHWA Class 9 trucks. Compared to other 
body types, such as a tank, dump trailer, and auto transporter, 

these selected two body types are more challenging to classify 
due to the higher similarity in their shapes and sizes. Being 
able to classify truck body types is important for freight 
planning, and commodity flow modeling since body 
configuration can be linked to many concepts of traffic 
management such as the types of commodity hauled or 
stochastic capacity estimation [6, 7]. While there is very 
limited literature on truck body classification, researchers 
have investigated the general vehicle classification problem 
based on image data using various techniques. Support vector 
machines (SVM) are commonly used in many studies for 
image classification. Some studies have used high 
dimensional histograms, to train a SVM [8]. More recently,  
researchers  use histogram of oriented gradient to train a 
nonlinear SVM with a Gaussian kernel function for 
classification of vehicle images [9]. In their model, the vehicle 
images are classified into four categories, motorcycle, car, 
lorry, and background. Another approach to classification is 
general active-learning framing which has achieved high 
accuracy (90%), high recall, and good localization. Their 
model was applied to static images and roadway video data 
captured under different traffic conditions (traffic variety, 
road illumination, weather conditions) [10]. Another popular 
way to do this classification task is to use statistical models 
such as the hybrid dynamic Bayesian network [11] which is 
able to obtain high classification accuracy using low-level 
features (height, width, and angle). The model classifies an 
image into one of four classes considered: sedan, pick-up 
truck, SUV/minivan, and unknown.  

 Recent advancements in computational power and 
graphical processing units have increased the performance of 
machine learning methods significantly. Computers have 
achieved superior performance for tasks such as image 
retrieval [12], object detection, and tracking [13, 14]. 
Convolutional Neural Network (CNN) classification is one of 
the most widely used machine-learning methods in current 
research. The advantage of CNN-based image classification is 
the sophisticated network structure that gives it the ability to 
perform feature extraction and selection automatically from 
large-scale training data. High classification performance is 
obtained by learned feature representation in CNN models. It 
describes the property of different categories much better than 
other approaches. The CNN needs a tremendous amount of 
data to optimize the numerous parameters of its network 
structure [15]. Recently, many researchers in the field of 
transportation engineering have begun using CNN 
classification. For instance, Kafai et al. [16] have applied a 



deep CNN to automatically detect cracks on hot-mix asphalt 
and portland cement concrete using surfaced pavement 
images. In another study, to extract variable-scale features for 
vehicle detection, a hybrid deep CNN is developed and 
applied to satellite images [17]. They have divided the maps 
of the last convolutional layer and the max-pooling layer of a 
deep CNN into multiple blocks of variable receptive field 
sizes or max-pooling field sizes. It was shown that the 
proposed model is able to extract variable-scale features and 
outperform simple deep CNN.   

Because of the limitations in computational resources and 
the size of training data, the training process of large CNNs is 
time-consuming and easily results in overfitting. Since the 
CNN model requires huge amounts of data for training, some 
studies have tried a pre-training and fine-tuning approach to 
overcome this problem [18]. A GoogleNet model [19] was 
pre-trained on the ILSVRC-2012 dataset to obtain the initial 
model. Then the initial model was fine-tuned on their vehicle 
dataset containing 13,700 images extracted from surveillance 
cameras. They have reached 98.26% accuracy for 
classification. Although this approach lessens the overfitting 
problem, the pre-training is still computationally intensive. 
Usually, low-level features are very similar to various images, 
so it is intuitive to keep low-level features learned from one 
dataset and transfer it for classification of other datasets. 
Transfer learning saves computational power by partially 
using the feature descriptor parts of an already existing trained 
model such as AlexNet [20] but replacing the classifier part 
with the new task-specific variables. Many researchers [21-
24] have used intermediate activation functions learned with 
pre-trained models on large datasets to improve the accuracy 
and proficiency of new models with limited training data.  

There are several CNN architectures trained on ImageNet 
[15] that can be used as pre-trained CNNs including CaffeNet 
[25], GoogleNet [19], VGGNet [26], and AlexNet [20]. One 
of the common problems that arise in these models is the 
degradation problem, i.e., both training and testing accuracy 
begin to unexpectedly degrade as the network depth increases. 
Recent studies have implemented residual learning to 
overcome this problem [27, 28]. 

II. METHODOLOGY 

The transfer learning method used in this article 
incorporate a pre-trained ResNet [29] model as a feature 
descriptor and then feed those features as an input for a simple 
supervised classifier. 

A. Pre-trained ResNet 

ResNet proposes that residual learning blocks be added for 
solving the degradation problem caused by multiple nonlinear 
layers. The degradation problem makes it difficult to achieve 
an identity mapping for a layer, even if it is the optimum. By 
using residual learning, if the optimal solution for a specific 
case is closer to an identity mapping (i.e., the output is a 
slightly altered version of the input), the solvers can reach it 
by simply driving the weights of the multiple nonlinear layers 
toward zero. This way, the solver should converge easier by 
retaining the input rather than learning the function like a new 
one.  

 
Fig. 1. Identity block 

The mathematical formulation of the added residual learning 
units can be expressed as: ,  

Where  and  are, respectively, the input and output 
vectors of the layers considered; and the function ,  
represents the residual mapping to be learned. The architecture 
of this building block is represented in Fig. 1. The added 
shortcut solves the degradation problem without introducing 
extra parameters or computation complexity. 

The ResNet architecture used in this article has 151 
convolutional layers and a final dense layer with a Softmax 
activation function. The structure of the model, along with its 
respective hidden units, is presented in Fig. 2. As it can be 
seen, a residual learning block is defined for every few stacked 
layers (yellow boxes). Building blocks are shown in white 
boxes with the numbers of residual blocks stacked written on 
the right (i.e., 3 . Down-sampling is done by blocks 
conv3_1, conv4_1, and conv5_1 with a stride of 2. 

B. Supervised classification 

The supervised classification is one of the most popular 
subfields of machine learning concept. It is most often used 
for quantitative analysis to find regions that can be associated 
with the classes of interest on the spectral domain of the 
application [30]. There are many different supervised 
classification algorithms. In this paper, three of popular 
algorithms have been utilized as a classifier on extracted 
features of the pre-trained ResNet model.  

1. the  K-nearest neighbor (KNN) is a non-parametric 
approach used for supervised classification [31]. 
When there is a little knowledge about the distribution 
and space of the dataset, KNN would be one of the 
popular choices for the classification task. The model 
finds K-nearest neighbors based on the Euclidean 
distance between a test sample and labeled training 
samples. The majority class label of its k nearest 
training samples would be assigned to the test sample. 
To avoid ties, K is usually chosen to be odd.  

2. The SVM is considered one of the fundamental 
supervised machine learning approaches that have 
been used in many studies [32]. The model solves an 
optimization problem on training data to find the 
optimal line to separate two classes. By choosing 
desired kernel function, the classifier line can be 



considered linear or nonlinear depending on the 
complexity of the model. 

3. The MLP model is a supervised learning algorithm 
which consists of an input layer, an output layer, and 
a multi-layer hidden layer. MLP, unlike  most 
regression algorithms, makes no prior assumption 
about the distribution of data. Several nonlinear 
functions are used to train and generalize the unseen 
input data to predict the objective variable. Moreover, 
MLP can be used to generate multiple outputs, 
whereas support vector machines allow only one 
output [33].  

4. Proposed Model 

The ResNet model pre-trained on the ILSVRC-2015 
dataset is used here to determine the image features. Since the 
model is pre-trained, extractions of the already learned 
features will save a great amount of computational power. 
However, features in a CNN grow in complexity as we step 
deeper into the network. Therefore, the next task is to identify 
the optimal point at which the ResNet structure should be cut, 
in order to get the right level of feature complexity for our 
task. We have tested four different positions in this article for 
a simple KNN classifier to be inserted in the structure, as 
shown in Fig. 2. The features are separately and independently 
extracted from the ResNet model in each of these cases and 
used as the feature descriptors for the respective KNN 
classifier. The implemented KNN classifier search for five 
nearest neighbors for the classification.  

 
Fig. 2. The architecture of the ResNet-152 with the proposed positions for 

the classifier 

 

Fig. 3. Dataset sample for truck classification 

5. Dataset and computational configuration 

The data used in this article is collected by a roadside 
surveillance camera installed at the westbound direction of I-
64 near the Hampton Roads Bridge-Tunnel (HRBT). The 
tested highway has two lanes at this location. There are many 
categories of truck body configurations that one can consider 
[6]. In this paper, two of the most challenging categories have 
been selected for classification, i.e., trailers with containers 
and enclosed vans. As it can be seen in Fig. 3, the two 
examined body types are very similar in structure. The total 
number of truck images used is 1,200 out of which 530 are 
trailers with containers, and the rest are enclosed vans. The 
images have been resized to 224 224 3 to be consistent 
with ResNet input. 80% of the data has been used for training, 
and the rest is set aside to be used as the test data. All images 
are from the same angle, and there are no multiple vehicles in 
the same image. Ground truth labeling of these images was 
done manually. All computations in this article were 
conducted with Tensorflow platform on Windows 7 OS with 
Intel Xeon E5-2630 2.40 GHz and an NVIDIA Quadro K4200 
GPU with 4 GB memory.  

TABLE 1. Accuracy for proposed positions for the classifier 

Models Accuracy % 

Classifier_1 68.2 

Classifier_2 81.7 
Classifier_3 84.7 
Classifier_4 72.3 



III. RESULTS AND DISCUSSION 

Four different placements of KNN classifier, as shown in 
Fig. 2, have been tested to identify the optimal point at which 
the ResNet structure should be cut. The accuracy results 
representing the percentage of correct predictions for each 
model on the test data are presented in TABLE 1. The 
Classifier_1 is the worst performing model in predicting the 
image labels. This is because the features are primary and 
basic at this level of the network and the Classifier_1 fails to 
correctly identify the correct truck type based on these 
features. Examples of possible features at this level will be a 
color change, the shape of lines, edges, etc. It is evident that it 
is impossible to identify between a container and an enclosed 
van using these simplistic features. Features grow in 
complexity as we go deeper in the network and Classifier_2 
will get more complex features from the pre-trained CNN 
compared to Classifier_1. By the same logic, Classifier_3 and 
Classifier_4 should be more accurate than their proceeding 
peers. However, the performance of the last proposed 
placement for Classifier_4 is lower than Classifier_3. This 
happens because the features beyond Classifier_3 are 
becoming adversely complicated for the classifier to 
distinguish between these two vehicle classes. In other words, 
there exists an optimal point where the best-suited features for 
detecting these type of vehicle classes can be accessed. In this 
case, the first 141 layers of ResNet_152 had the best 
performance for the feature extraction task. 

Three classical approaches of classification were 
examined to find the best classifier for extracted features. 
Features extracted from the first 141 layers of ResNet_152 
were used to develop MLP, SVM, and KNN models. The 
implemented MLP has two fully connected layers with 1024 
hidden units, the learning rate of 0.001 and 200 epochs of 
training. The implemented SVM has a radial basis kernel 
function with the gamma parameter equals to 0.2, and the 
KNN find 5-nearest neighbors. The accuracy of these models 
in comparison to the MLP is presented in TABLE 2. The 
MLP model outperforms both SVM and KNN results. 

The convergence of model accuracy for MLP on both 
training and test data is presented in Fig. 4. An epoch is when 
all the training samples are used once to update the weights 
by the optimization algorithm that iteratively improves the 
model variables (e.g., weights). The accuracy of test data 
follows approximately the same trend as the accuracy of 
training data, and after around 100 epochs the model becomes 
steady. The confusion matrix for the test data is shown in 
TABLE 3. It is evident that misclassification is a little skewed 
towards containers. 

 
TABLE 2. The accuracy of different classifiers fo extracted features 

Models Accuracy % 

MLP 96.5 

SVM 88 
KNN 84.7 

 

 

 
Fig. 4. Convergence of the model accuracy for MLP 

TABLE 3. The confusion matrix of MLP model for the test data 

 
 Predicted labels 

 
 Enclosed van Container 

True labels 
Enclosed van 134 (98.5 %) 8 (7.7 %) 

Container 2 (1.5 %) 96 (92.3 %) 

IV. CONCLUSION 

In this paper, a transfer learning model is developed for 
classification of truck body types based on image data. Since 
the simple features for any type of image dataset are the same, 
it was possible to transfer features learned by a pre-trained 
model (ResNet_152) to another classifier and build highly 
accurate models with small datasets. Two of the most 
challenging categories of trucks are chosen to train the model. 
Four different experiments are conducted to find the optimal 
level of complexity for transferring learned features. It is 
shown that first 141 layers of the ResNet_152 have the best 
performance on this dataset. Furthermore, three different 
classifiers are investigated with transferred features. Results 
show that MLP outperforms other classifiers with a 96.5% 
accuracy on the selected test data. A similar strategy can be 
applied to other categories of trucks, different angles of 
camera and different weather or visibility conditions. In the 
future, these complex conditions and additional categories of 
truck body types will be considered.  
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