
  

  

Abstract— Detecting roadway segments inundated due to 

floodwater has important applications for vehicle routing and 

traffic management decisions. This paper proposes a set of 

algorithms to automatically detect floodwater that may be 

present in an image captured by mobile phones or other types of 

optical cameras. For this purpose, image classification and flood 

area segmentation methods are developed. For the classification 

task, we used Local Binary Patterns (LBP), Histogram of 

Oriented Gradients (HOG) and pre-trained deep neural 

network (VGG-16) as feature extractors and trained logistic 

regression, k-nearest neighbors, and decision tree classifiers on 

the extracted features. Pre-trained VGG-16 network with 

logistic regression classifier outperformed all other methods. For 

the flood area segmentation task, we investigated superpixel 

based methods and Fully Convolutional Neural Network (FCN). 

Similar to the classification task, we trained logistic regression 

and k-nearest neighbors classifiers on the superpixel areas and 

compared that with an end-to-end trained FCN. Conditional 

Random Fields (CRF) method was applied after both 

segmentation methods to post-process coarse segmentation 

results. FCN offered the highest scores in all metrics; it was 

followed by superpixel-based logistic regression and then 

superpixel-based KNN. 

I. INTRODUCTION 

Flood-prone communities, e.g., coastal cities, experience 
frequent flooding due to storm surge, heavy rain, and sea level 
rise. According to one study, by 2050, recurrent flooding will 
be common for many US coastal cities and will likely occur 
thirty or more days per year due to sea-level rise [1]. 
Information about roadway inundation is critical during the 
flooding events because delivery of goods and services and 
movement of emergency vehicles depend on a working 
transportation infrastructure. This paper provides a method for 
monitoring roadway inundation based on crowdsourced 
images with the help of machine learning methods. Machine 
learning has become popular recently, mainly due to the 
progress made in deep learning methods.  

Earlier literature in flood detection has mainly focused on 
using remote sensing devices such as satellite and aircraft [2, 
3]. Although remote sensing methods provide high-level flood 
information, they lack local details. Greater local details can 
give more information about the severity, extent, and depth of 
floodwater on specific road segments. Video and surveillance-
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based methods have also been studied to detect flood or water 
level changes [4, 5]. Water segmentation in images and videos 
is a related problem to flood detection. Water area detection 
was studied for unmanned vehicle navigation [6, 7, 8]. 
Spatiotemporal information and probabilistic models were 
also studied to detect water in videos [9-10]. Ground-level 
flood detection and classification have been an active research 
field recently. Geetha et al.  proposed a method to find the 
floodwater extend and approximate depth of it using 
thresholding techniques [13]. Lopez-Fuentes et al. proposed a 
multi-modal deep learning method for flood image 
classification using textual information and images from social 
media [14]. Dry-flood image comparison-based methods were 
also studied [15, 16]. These models used hand-selected 
parameters and compared flood-dry image pairs for each flood 
location.   

In this paper, our main contributions are: 

• Development of an image classifier system to classify 
images as flood images or dry images. Different from the 
work of Lopez-Fuentes et al. [14], we didn’t incorporate 
metadata and only used image information. In addition, 
we compared deep learning and classical machine 
learning methods for feature extraction. 

• Fully automated flood area segmentation using 
superpixel based and deep learning methods on a diverse 
crowdsourced dataset. Our models don’t require hand-
selected thresholds as was done in some previous studies 
[13, 15, 16]. The methods are tested on images collected 
in different environments such as urban, suburban, and 
natural settings. 

• Generation of a dataset of 253 hand-labeled flood images 
coming from different locations with different 
characteristics. This dataset is used both in image 
classification and flood area segmentation tasks. The 
dataset is made available by the authors to support further 

research in this field . 

For the classification task, we used the following methods for 

feature extraction: Local Binary Patterns (LBP), Histogram of 

Oriented Gradients (HOG), and pre-trained VGG-16 deep 

learning network. We used logistic regression, k-nearest 
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neighbors, and decision trees as classification methods on the 

extracted features. For this task, we used 253 flood images and 

238 images without floodwater. For the flood area 

segmentation task, we used superpixel-based handcrafted 

features and Fully Convolutional Neural Network structure 

[17]. Some background information about these methods is 

provided in Section II. In Section III, we show sample images 

and briefly discuss the image data. Implementation section 

explains our model training procedures, and in Section IV, we 

summarize the performance and accuracy of the models.   

II. BACKGROUND 

A. Feature Extractors 

Feature extractors are used to construct feature vectors in 
machine learning problems. For this purpose, we used Local 
Binary Patterns (LBP), Histogram of Oriented Gradients 
(HOG), and pre-trained neural network. 

Local Binary Patterns (LBP): LBP method was introduced 
by Ojala et al 1994 [18]. It is used as a visual descriptor for 
texture classification tasks. In this method, image is divided 
into cells of the same size, e.g., 16x16 pixels. Each pixel in the 
cell is compared with its neighbors following a clockwise or 
anti-clockwise circle. If the pixel value is greater than a 
neighboring pixel value, we place 1 (and 0 otherwise). This 
gives a 4-digit binary number for 4 connected neighbors (top, 
down, right and left) and 8-digit binary number for 8 
connected neighbors (top, top-left, top-right, down, down-left, 
down-right, right, left). These binary numbers will be 
converted to decimals and their values are kept in a histogram 
for each cell in the image. When we concatenate all histograms 
coming from the cells, we have a single feature vector for the 
image.  

Histogram of Oriented Gradients (HOG): Histogram of 
Oriented Gradients (HOG) is a feature extraction method that 
models appearance or shape of objects in an image [19]. In this 
method, image gradients in X and Y directions are calculated. 
Gradient histograms are calculated and normalized for 
separate cells. When all histograms coming from the cells are 
concatenated, a single feature vector for the image is 
constructed. 

Pre-trained deep neural network (VGG-Net): VGG-net 
was proposed by Simonyan and Zisserman in 2015 for image 
classification task [20]. VGGNet achieved state-of-the art 
results in ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) [21]. VGGNet introduced a simple structure with 
the same convolution and max-pooling layers applied many 
times. It consists of multiple 3x3 convolutions followed by 
max-pooling layers. There are 16- and 19- layer versions of 
this network.  In this paper, we used VGG-16 as a feature 
extraction method and got output of the last max-pooling layer 
in the network. Using a pre-trained network on another 
problem is called “Transfer Learning”. This helps transfer 
knowledge already acquired (from large datasets) to another 
problem (with smaller dataset) and thereby reducing the 
training time. Use of pre-trained CNNs for image 
classification has been a common way to achieve good results. 

Some roadway and transportation related CNN applications 
are ranging from vehicle classification [22-25, 35], road 
damage detection [26] to transportation speed prediction [27]. 

B. Classifiers 

Classifiers are machine learning models that are trained with 
the extracted features described in Section A. We used three 
common supervised classification methods, i.e., logistic 
regression, k-nearest neighbors, and decision trees, to predict 
whether or not a given image contains a scene with floodwater.  

Logistic Regression: Logistic regression is a classification 
method where input variables are multiplied by coefficients 
and mapped to discrete classes using logistic sigmoid 
functions [28]. Logistic sigmoid functions provide probability 
values that can map to discrete values for classification. 
Sigmoid function 𝜌(𝑡) is given in Eq. 1. 

 𝜌(𝑡) =
1

1+𝑒−𝑡 () 

Usually ‘L1’ or ‘L2’ regularization is applied as penalty 
against model complexity. This regularization reduces the 
weight coefficients and helps achieve better generalization 
performance. 

K-Nearest Neighbors (KNN): In K-Nearest Neighbors 
classifier, a data point is classified based on the majority of the 
“K” nearest training data points [28]. “K” is a positive number 
and needs be determined beforehand (hyperparameter). If K is 
selected too small, the model can include noise in the data and 
may not perform well. If K is too large, the model doesn’t 
reflect the general properties of the training data. KNN is 
considered an instance-based learning method.  

Decision Trees (DTs): Decision tree (DT) is a flowchart 
structure that creates rules similar to if-else statements. The 
tree represents the decisions [29]. Decision tree classification 
logic is easy to interpret for humans as we can trace the path 
followed in the tree. DTs grow into branches looking for purer 
subsets at each split (Figure 1).  

 

Figure 1. Decision tree nodes 

DTs usually use cost functions that measure purity level after 
the split decisions. Some common cost functions are gini, 
entropy, and classification error.  

C. Semantic Segmentation Networks  

The purpose of semantic segmentation is to assign every 
pixel within the image to a class of interest. In this paper, there 
are two classes: floodwater and everything else. We studied 



  

superpixel and Fully Convolutional Neural Networks (FCNs) 
based semantic segmentation methods.  

Superpixel based Semantic Segmentation with Hand-
crafted Features: Superpixels are groups of pixels with 
similar intensity values. Superpixel segmentation divides an 
image into non-overlapping areas or regions. The main 
advantages of using this method are reducing the input feature 
size for subsequent classification algorithms and calculating 
features over related regions. One disadvantage of this method 
is that initial segmentation errors will be propagated through 
the rest of the process. In this paper, we used Simple Linear 
Iterative Clustering (SLIC) superpixel method [30] for its low 
computational cost. SLIC uses k-means clustering to 
efficiently create superpixels. Feature extraction methods are 
applied to each superpixel region and classifiers are trained to 
assign the correct class label to each region. More information 
about the model structure is given in the implementation and 
results sections. 

Fully Convolutional Neural Networks (FCNs): FCNs are 
commonly used for semantic segmentation tasks. They were 
introduced by Long et. al in 2015 [17]. In classification, 
conventionally, images go through convolution and pooling 
layers and then fully connected layers. The output is the class 
of the whole image (Figure 2). The width and height at each 
layer get smaller (downsampled).  

 

Figure 2. Conventional image classification network 

A conventional classification network can be converted to 
FCN by cutting the network before fully connected layers and 
adding upsampling layers. Different level of information from 
previous layers can be used with skip connections. Figure 3 
below shows the general structure of this network.  

 

Figure 3. FCN structure 

After each upsampling layer, image size (width and height) is 
increased. Upsampled layers are then merged and a single 2D 
matrix with size equal to the original image size is achieved. 
In order to reduce training time and the need for a large image 
database, we can use pre-trained networks for the convolution 
part of the network. Possible options include AlexNet [31], 

VGG-Net [20], and GoogLeNet [32] which can be used as the 
convolutional layers or feature extractors [17]. In this paper, 
we used VGG-Net.  

Conditional Random Fields (CRFs): CRFs are used to 

smooth semantic segmentation results. CRFs are applied after 

both superpixel based methods and semantic segmentation 

network in our implementation. Let G be a graph over x and y 

where x is a vector formed by random variables x1, x2, x3, ..., 

xV where V is the number of pixels in the image and Y is a 

label random variable that can take values from {y1, y2, …, yn} 

where n is the number of classes [33]. x values denote our local 

image features such as color or texture. Every x has a 

corresponding y value which denotes its label. CRF models the 

probability P(y/x) with a Hidden Markov Field where the 

conditional probability is only dependent on the current 

position and its adjacent pixels (Markov property) [36]. G = 

(V, E) is the graph with vertices V and edges E. This 

relationship is shown in Figure 4.  

 
Figure 4. CRF graph structure 

The CRF energy function is given by Eq. 2. We try to 

minimize this energy function.  

 𝐸(𝑋) = ∑ 𝜓(𝑥𝑖)𝑖𝜖𝑉 + ∑ 𝜓(𝑥𝑖 , 𝑥𝑗)𝑖,𝑗𝜖𝑉  () 

where the first term 𝜓(𝑥𝑖) is called the unary term, the second 
term 𝜓(𝑥𝑖 , 𝑥𝑗) is the pairwise term and xi and xj are adjacent 
pixel values. Unary term is assigned by the pixel class 
probability and the pairwise term accounts for smoothness in 
adjacent pixels and assigns similar labels to pixels with similar 
properties [34]. The labels that result in the smallest energy 
value E(X) are used. 

III. DATASET 

Our dataset consists of 253 flood images and 238 images 

without flood. All images have the same size of 385x512. 

Flood images were hand-labeled so that pixels corresponding 

to flood areas have value of one and the rest of the pixels are 

zero. The flood image dataset contains different scenes from 

urban, suburban and natural settings and it will be useful for 

further flood detection-segmentation research.  Some sample 

images are shown below in Figure 5. Flooded areas are marked 

with yellow color. 

IV. IMPLEMENTATION 

A. Classification 

For the classification task, we used 253 flood images and 238 

non-flood images. Dataset is shuffled and split into training 



  

 

Figure 5. Sample flood images and their pixel labels (floodwater in 

yellow) 

(80%) and test (20%) subsets. We used three feature 

extractors: LBP, HOG and VGG-16. After feature extraction 

step, we trained three classifiers: Logistic regression, k- 

nearest neighbors and decision trees for each of the feature 

extraction. This gives a total of 9 classifiers. We used grid 

search with 5-fold cross validation for hyperparameter 

optimization. Average inference time for each classification 

method is primarily affected by the feature extraction method. 

For a Macbook Pro computer with Intel I5 processor and 8GB 

memory, LBP takes 0.2 seconds, HOG takes 10.3 seconds and 

VGG takes 1.25 seconds to process a single image. Images are 

resized to 224x224 for the classification task. Results are 

summarized in Table 2 and discussed in the next section.   

B. Semantic Segmentation 

For this task, we used the 253 flood images. Similar to the 
classification task, we split the dataset into training (80%) and 
test (20%) subsets.  

Superpixel and Hand-crafted Features: We implemented 
superpixel-based methods and hand-crafted feature vectors. 
Feature vectors include mean x and y positions, R intensity, G 
intensity, B intensity, and local binary patterns (LBP) 
histogram for each superpixel area. We trained logistic 
regression and k-nearest neighbors classifiers on these 
features. SLIC with 250 segments were used as the superpixel 
segmentation method and we used grid search for hyper-
parameter optimization of the classifiers. Average inference 
time for a single image on a Macbook Pro computer with Intel 
I5 processor and 8GB memory is 2.12 seconds.  

Fully Convolutional Neural Network (FCN): For the initial 

convolution part of the FCN, we used a pre-trained VGG-16. 

We fine-tuned and trained the network with the training 

subset and tested on the test subset. Stochastic gradient 

descent with learning rate 0.01 and Nesterov momentum were 

used in the optimization process. We used Keras deep 

learning library with Python 3.6. The model was trained for 

30 epochs with batch size 12. Average inference time for a 

single image is 2.27 seconds with a MacBook Pro computer 

with Intel I5 processor and 8GB memory. Results are 

summarized in Table 3 and discussed next. 

V. RESULTS 

In this section, we summarize our test results. We used 

precision, recall and F1-scores as performance measures 

which are derived from the values in the confusion matrix. 

Confusion matrix is defined in TABLE 1. 
Table 1. Confusion matrix 

  Prediction 

 �̂� = 0 �̂� = 1 

True 

label 

y=0 True Negative False Positive 

y=1 False Negative True Positive 

Our performance measures are given in Eq. 3-5 below. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ ∑ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  () 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ ∑ 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 () 

  𝐹1 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 () 

 

We summarize classification and semantic segmentation 

results in this section. 

A. Classification 

Three different feature extraction methods (LBP, HOG and 

VGG-16) and three classifiers (logistic regression, k-nearest 

neighbors and decision tree) were used for the binary 

classification of images (i.e., whether an image contains a 

scene with floodwater). VGG-16 deep neural network feature 

extraction achieves the highest scores in all measures: 0.94 

precision, 0.97 recall, and 0.95 F1-score. 

B. Semantic Segmentation 

In this section, we compared superpixel hand-crafted 

measures and fully convolutional neural network. FCN 

produced the highest scores in all metrics. Similarly, logistic 

regression achieved higher scores than KNN in all metrics. 

Some sample FCN results are shown in Figure 6. Detected 

flood areas are marked with yellow color. Looking at our test 

results, we can realize that the model sometimes misclassifies 

pixels that are reflections of objects on the water. We will 

further work on improving the model for reflection cases. 



  

Table 2. Classification Results 

Feature 

extraction 
Classifier Precision Recall F1-score 

LBP 

Logistic 

Regression 
0.76 0.72 0.74 

KNN 0.63 0.76 0.69 

Decision 
Tree 

0.61 0.68 0.64 

HOG 

Logistic 
Regression 

0.70 0.82 0.76 

KNN 0.56 0.88 0.69 

Decision 

Tree 
0.71 0.60 0.65 

VGG-16 

Logistic 

Regression 
0.94 0.97 0.95 

KNN 0.67 0.89 0.77 

Decision 
Tree 

0.80 0.77 0.79 

 

Table 3. Semantic Segmentation Results 

Feature 

extraction 
Classifier Precision Recall F1-score 

Superpixel and 
hand-crafted 

features 

Logistic 
Regression 

0.89 0.84 0.86 

KNN 0.83 0.82 0.82 

Fully Convolutional Neural 

Network (FCN) 
0.92 0.90 0.91 

VI. CONCLUSION 

In this paper, we studied flood image classification and 

flood area segmentation problems and provided a new pixel 

labeled dataset. We introduced novel flood image 

classification methods. VGG-16 deep learning-based feature 

extraction with logistic regression resulted in high scores on 

all performance measures (precision, recall and F1-score). For 

flood area segmentation, we compared superpixel-based 

methods with FCN. In this task, the proposed methods 

resulted in closer results to each other than the methods for 

the classification task. FCN has further improvement 

potential with more labeled data. As a future work, more 

complex semantic segmentation networks will be tested 

against the superpixel based methods and FCN. In addition, 

the authors will investigate extracting more information from 

the floodwater such as flood severity level and water depth 

estimation and work on improving the model for water 

reflection cases. 

 

 

 

 

 

 

 

Figure 6. Some FCN flood segmentation results 
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