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signal timing and other intelligent transportation system (ITS) appli-
cations. In order to support the development of these applications, 
research is needed to understand how probe vehicle technology 
could potentially improve the estimation of desired parameters.

The focus here is on the use of probe vehicle data in the context 
of studying queuing phenomena observed at traffic signals. More 
specifically, by using the time and location data generated by probe 
vehicles, the evolution of the back of the queue is estimated over 
time. The methodology makes use of shock wave theory to estimate 
the evolution of the back of the queue over both time and space from 
the event data generated when probe vehicles join the back of the 
queue. Another common approach to study queuing dynamics is 
the cumulative curve method (10), but that method requires a count 
of all vehicles at specific locations (which is not available when 
market penetration of probes is less than 100%) and does not always 
represent the spatial extent of the queue explicitly. Although some 
researchers demonstrate that the spatial extent of the queue can be 
determined from cumulative count curves (11, 12), the construction 
of the back of the queue is easier in shock wave theory when the 
arrival rate is time dependent (11).

The kinematic wave model used here to describe traffic flow 
dynamics is the widely known Lighthill–Whitham–Richards 
(LWR) model (13–15). This model arises from the principle of the 
conservation of vehicles and a fundamental diagram that relates 
flow to density, and is well known to reproduce the important traffic 
flow features (e.g., shock waves). The original LWR model has been 
extended in numerous studies to represent additional complexities 
(16–18). It has also been used in recent studies by Ban et al. (6, 7) 
and Liu et al. (19) that are particularly related to this study.

Liu et al. use high-resolution event-based data from traffic sig-
nals and fixed sensors to predict the maximum queue lengths for 
each cycle at intersections (19). Ban et al. estimate queue lengths 
by using the travel times and delays measured by mobile sensors 
(probe vehicles) between some predefined virtual points before and 
after the signalized intersections (6). By using the delay patterns, 
they identify the critical points when the queue is maximized, mini-
mized, or cleared within a cycle. Both studies make use of the LWR 
theory to predict changes in vehicle trajectories and the shock waves 
created by the traffic signals. Other researchers also use the LWR 
theory in estimating queue lengths (20).

Researchers also use statistical methods to predict queues at sig-
nalized intersections. For example, Comert and Cetin developed 
analytical models for errors in queue length estimation based on 
probe vehicle data (8, 9). Researchers have also developed Markov 
chain models to predict average queues and their standard devia-
tions (21). However, these models are developed on the basis of 
point queue models and do not represent space.
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space from the event data generated when probe vehicles join the back 
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dynamics. The methodology is applied to sample data generated from 
the microscopic traffic simulation software VISSIM. It is found that 
the proposed methodology is effective in estimating queue dynamics 
at traffic signals.

Within the past decade, there has been a growing interest in equip-
ping vehicles with wireless communications and location technolo-
gies to enable new applications for improving roadway safety and 
efficiency. The U.S. Department of Transportation’s Connected 
Vehicle Research program is a significant effort to make the vision 
of seamless vehicle-to-vehicle and vehicle-to-infrastructure com-
munications a reality (1). Within this vision vehicles are aware of 
their own locations in the transportation system and will exchange 
useful information with other vehicles as well as with the infra-
structure. By tracking the positions of these probe vehicles along 
roadway segments, a wealth of information is generated to precisely  
characterize traffic flow dynamics. This knowledge in turn allows 
the system operators to improve system efficiency by taking relevant 
control actions (e.g., retiming traffic signals and responding faster 
to incidents).

Even though the use of probe vehicles as a traffic data source has 
been investigated, for example, in the context of travel time estima-
tion (2–5), there has been limited effort toward investigating the use 
of probe data for queue length estimation (6–9). With the deploy-
ment of vehicle-based information collection technologies, there 
will be great interest in capitalizing on the probe data for traffic 
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The methodology presented here differs from the previous studies, 
in particular work by Ban et al., in that the queue estimate is simply 
based on the time–space coordinates of vehicles when they join the 
back of the queue in each cycle (6). From the vehicles observed in a 
cycle, data only from the first and last vehicles are used in the esti-
mate. Furthermore, the formulation does not make any assumptions 
about the probe percentage nor does it require probe observations 
in each cycle, in contrast to the minimum requirement of two probe 
observations per cycle as indicated by Ban et al. (6). In addition, the 
methodology does not impose any restrictions on the extent of the 
oversaturation or the number of stops a single vehicle makes to get 
through the intersection. However, the methodology presented here 
has limitations since undersaturated conditions have not yet been 
handled, which is left for future work.

Problem Definition and Setting

To develop the formulation to estimate the queue, a number of sim-
plifying assumptions need to be made. Figure 1 shows a sample time–
space diagram with vehicle trajectories in which there is a residual 
queue at the end of each cycle. Shock wave lines demarcating dis-
continuities in traffic states based on the LWR theory are added. Of 
particular importance are the critical points indicated by Rn and Qn, 
which characterize the dynamics of the back of the queue, where n 
denotes the cycle number.

The specific conditions for which the formulation is developed 
are described in the following subsections.

Roadway Geometry and Signal Timing

A single-lane road leading to a signalized intersection is considered. 
The traffic signal is assumed to operate on a fixed cycle with alter-
nating green and red phases of equal duration. This feature should 

not be considered as a limitation of the work since the formulation 
can be easily adapted to varying cycle and phase lengths.

Probe Data

Even though probe vehicles can technically collect data continu-
ously (e.g., every second), such a large data set is not needed to 
estimate the queue dynamics. In this study, only the location and 
time data when probe vehicles join the back of the queue are used. 
In other words, for each probe vehicle, a single data point is needed, 
which contains its location on the link and the time instant when it 
joins the back of the queue.

Probe Vehicle Population

No assumption is made about the percentage of probe vehicles in 
the traffic stream.

Traffic Flow

It is assumed that vehicles arrive randomly at the intersection with 
an unknown rate. The methodology does not account for scenarios 
in which vehicle platoons form because of an upstream signal.

Shock Wave Speeds

It is assumed that the speeds of the backward-moving shock waves 
AnRn and BnQn in Figure 1 are known and equal. On the basis of the 
LWR theory, shock wave speeds are simply found by Δq/Δk, where 
the numerator is the difference in flows of the two traffic states sepa-
rated by these shock waves and the denominator is the difference in 

FIGURE 1    Vehicle trajectories and shock wave diagram (◽ 5 linear regression line to probe vehicle data).
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densities. Since these differences will be the same for shock waves 
AnRn and BnQn in Figure 1, their speeds will also be the same.

This principle is used in other studies as well (6, 19). These 
speeds can be determined if a fundamental diagram is available or 
from vehicle trajectory data as shown in Figure 1. In addition, the 
speed of the forward shock waves QnRn+1 is known. These speeds 
can be assumed to be equal to the free-flow speed. A detailed discus-
sion on how these speeds can be estimated is not within the scope 
of this study. The speeds of RnQn shock waves for the queue growth 
are to be estimated from the probe data. These speeds depend on the 
cycle-to-cycle variations in vehicle arrivals.

Online Versus Offline Application

The methodology presented here is for offline applications; how-
ever, it can be extended for online prediction, which is left for future 
research.

Queue Conditions

The formulation is developed for oversaturated conditions in which 
there is a residual queue at the end of each cycle. The formulation 
will be extended to model both undersaturated and oversaturated 
conditions in the future.

Methodology

As mentioned earlier, the only input data from probe vehicles are 
their time and location information when they join the back of 
the queue. The goal is to estimate the critical points Rn and Qn for 
each cycle n. The proposed methodology uses the LWR theory to 
develop a formulation to determine these unknown points. If the 
speeds for the shock waves representing queue growth (i.e., all RnQn 
lines) are known for all cycles, the problem can be solved. However, 
these speeds (or the slopes for the straight RnQn line segments) are 
unknown and need to be predicted from the probe vehicle data.

One might be tempted to fit a linear regression line to the probe 
vehicle data, shown with square symbols (◽) in Figure 1, for each 
cycle to estimate these speeds (or slopes for the straight RnQn line 
segments), but this method will not work since there may not be 
any probe observations in a cycle. Furthermore, such estimates may 
not be reliable since the number of data points can be very small, 
which may lead to unrealistic estimates. In addition, estimating 
these speeds independently will lead to inconsistencies since there 
is a fixed relationship between the coordinates of point Qn and Rn+1 
(explained later in the discussion of Equations 3 and 4).

The approach proposed in this study is as follows. Within each 
cycle, the first and last probe vehicle observations (if any) are 
identified. Using the last probe observation in cycle n and the first 
observation in cycle n + k (n + k is the next cycle with some probe 
observations), a constant shock wave speed is estimated (α in Fig-
ures 2 and 3). In other words, the vehicle arrival rate between these 
two observation points is assumed to be constant (since shock wave 
speed depends on flow rate), which is realistic since there is no addi-
tional available information to be used. Once this constant speed is 
determined, the coordinates for all critical points (i.e., Qn, Rn+1, Qn+1, 
Rn+1, . . . , Rn+k) between the two probe observations are then esti-
mated as explained in detail later. First, some notation and general 
relationships are introduced.

Figure 4 shows a sample shock wave diagram and the critical 
points Rn and Qn. The forward-moving shock waves (or interfaces) 
connecting Qn and Rn+1 have speed u for all n. On the basis of the 
assumptions made previously, the equations describing the shock 
wave lines starting at the stop bar and moving backward with a 
constant speed w can be easily written for a cycle n:

X X w t
n
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R = + − +



0

2 1

2
1( )

X X w t nCn
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where

	XR
n, XG

n	=	� shock waves starting at end of green and red phases, 
respectively, for cycle n;

	 X0	=	space coordinate of stop bar;
	 w	=	speed of shock wave; and
	 C	=	cycle length.

Since both u and the green phase length are constants, Δ x and Δt 
shown in Figure 4 become constants for all cycles, which creates a 
fixed relationship between Rn+1 and Qn as explained later.

From the geometry in Figure 2, the relationship between the 
coordinates of points Rn+1 and Qn can be written as follows:
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FIGURE 2    Observed time–space 
coordinates of some probe vehicles 
in two consecutive cycles (P L

n and 
P F

n+1 denote, respectively, last probe 
vehicle in cycle n and first probe 
vehicle in cycle n 1 1; u 5 shock 
wave speed; G 5 green phase).
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FIGURE 3    Observed time–space coordinates of some 
probe vehicles that join back of queue of cycle n and 
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where XR
n and tR

n denote the space and time coordinates for point Rn. 
Likewise, XQ

n and tQ
n denote the space and time coordinates for 

point Qn.
With the known shock wave speeds u and w and the length of the 

green phase, G,
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Solving Equations 5 and 6 for the unknowns, Δx and Δt, yields
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From Equations 3 and 4, it should be clear that once point Qn is 
known, point Rn+1 is determined exactly.

Now, with the aid of Figure 2 the coordinates for points Qn and Rn+1 
will be estimated from the probe vehicle data. For each cycle the time–
space (t–s) coordinates of all probe vehicles (indicated by plus signs 
in Figure 2) when they join the back of the queue are known. Among 
these the first and last probe vehicles provide sufficient information to 
predict points Qn and Rn+1.

Let (tF
n, xF

n ) and (t Ln, x Ln ) represent the coordinates of the first and 
last vehicles, respectively, when they join the back of the queue of 
cycle n. The difference in time (and space) coordinates of the first 
probe in cycle n + 1 and the last probe in cycle n can be written as 
follows:
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Since it is assumed that the unknown arrival rate is constant 
between the two observed points,
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Similarly, for the first point in the cycle n + 1,
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where α is simply the tangent of the angle α shown in Figure 2 or 
the negative of the corresponding shock wave speed.

Equation 10 can be rewritten as follows by substituting the results 
from Equations 11 and 12:
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The summation of the two terms within the square brackets can 
be replaced by its equivalent from Equation 9:
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Finally, the unknown α can be determined from the known 
coordinates of probe vehicles as follows:
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Now the coordinates for the critical points can be determined. 
The critical point Qn is on the shock wave line X Gn. Therefore, its 
coordinates should satisfy the following (according to Equation 2):

x x w t nCn
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Another relationship between the t–s coordinates of the critical 
point Qn can also be written in terms of the known point P Ln and α:
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Solving Equations 17 and 18 simultaneously for the time coordinate 
t  Qn results in the following:
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FIGURE 4    Shock waves at traffic signal under oversaturated conditions.
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Similarly, the x-coordinate can be determined as follows:

x x
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0 20α

α α
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( )

or

x x w t nCn
Q

n
Q= + −( )0 21( )

since Qn is on shock wave XG
n+1 (see Figure 4).

In summary, the t–s coordinates of Qn can be found in terms of 
the observed probe data and known parameters by using Equa-
tions 19 and 21. Once the coordinates for the critical point Qn are 
determined, the critical point Rn+1 can be easily found by using 
Equations 3 and 4.

The previous formulation is for the scenario in which there are 
probe vehicle observations in two consecutive cycles. A more generic 
formulation is needed to account for other scenarios. Let n and n + k 
be any two cycles for which probe observations are available. It can 
be shown that the unknown slope α for the back-of-queue shock wave 
is as follows:

α =
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Equation 22 is the same as Equation 16 except that Δ x and Δt are 
multiplied by k, which counts the number of green phases between 
cycles n and n + k. Equation 22 can be verified by following steps 
similar to those used for Equation 16.

Once α is determined from Equation 16, coordinates of Qn can 
be determined by using Equations 19 and 20; subsequently Rn+1 can 
be found by using Equations 3 and 4. To complete the formulation, 
point Qn+1 needs to be found as well. This step can be done by find-
ing the intersection point of shock wave XG

n+1 (see Figure 4) and the 
linear line connecting Rn+1 to Qn+1. After some algebraic operations, 
the coordinates for point Qn+1 can be found as follows:

t
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Similarly, the x-coordinate can be determined as follows:
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Q
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Q
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The formulation for estimating all critical points Rn and Qn from the 
probe vehicle data is now complete.

Application to Simulation Data

In order to show the application of the formulation and to test its 
performance in estimating the queue dynamics, a simple network is 
created in the microscopic simulation software VISSIM to gener-
ate the needed data. A single one-lane link of approximately 1 km 
is created. A traffic signal with 45-s green and 45-s red phases is 
created at the end of the link (cycle length = 90 s). All vehicles are 
passenger cars with the desired speed of 50 km/h and they enter the 
network at a constant rate but randomly. Simulation resolution is set 
to five time steps per second. All other parameters are kept at the 

default values built within VISSIM. After the simulation has been 
run with an arbitrary high vehicle input rate, the capacity of the 
signalized intersection is determined to be 1,050 vph after analysis 
of the output data.

The vehicle trajectories shown earlier in Figure 1 are from a sce-
nario in which the vehicle input rate is set to 1,050 vph. The data 
shown with squares (◽ in Figure 1) are the coordinates of the probe 
vehicles when they join the back of the queue. Vehicles are assumed 
to be stopped when their speeds drop below 5 km/h. These coor-
dinates are found by simply determining the first time the vehicle 
speeds drop below this threshold.

In order to evaluate the performance of the formulation developed 
here, several scenarios are considered. These scenarios are created 
by varying the available probe vehicle data and the input flow rate. 
Figures 5 and 6 show the same simulation data as in Figure 1, except 
that the vehicle trajectories have been removed for clarity. In both 
plots, the signal is located at a distance of 1,000 m. Figures 5 and 
6 show (a) the coordinates of all vehicles and a set of randomly 
selected probe vehicles when they first join the back of the queue, 
(b) the shock wave lines for the back of queue when all vehicle data 
are used (Back of Queue_all), and (c) the estimated shock wave 
lines for the back of the queue when only probe data are used (Back 
of Queue_Probes). In addition, the backward-moving shocks cre-
ated because of signal phases are indicated with dotted lines. These 
dotted lines correspond to the scenario in which all vehicles are used 
to determine the shock waves and are only included for reference. In 
all scenarios, the critical points to construct the shock wave lines are 
found by the formulation presented in the previous section.

One could argue that rather than connect points Rn to Qn directly 
(see Figure 1) to create the shock wave diagram, the critical points 
can be connected to the intermediate probe observations to generate 
a more precise description of the back of the queue. Even though 
this step is possible, it requires additional computations and does 
not seem to be important for practical applications. Therefore, the 
back of the queue here is simply characterized by the straight line 
segments connecting Rn to Qn directly.

Figure 5 is for a scenario in which 10% of the vehicles are ran-
domly selected to be probes, whereas in Figure 6 the probe percentage 
is 5%, a relatively low value compared with those from other studies 
(6). As can be observed in Figure 5, in one cycle (Cycle 10) no probe 
vehicles are observed. (The critical points R and Q for each cycle can 
be traced back to the stop line by following the dotted lines to read the 
clock time and determine the cycle number.) For the second scenario 
with 5% probes in Figure 6, no probe vehicles are observed in three 
consecutive cycles. In both scenarios, the estimated back-of-queue 
time–space “profile” from the limited probe data is reasonably close 
to the true profile obtained on the basis of data from all vehicles. Only 
a visual comparison between the estimated and true queue profiles is 
shown here. It is possible to calculate performance measures like total 
delay and travel times from the diagrams in Figures 5 and 6 to get a 
more quantitative comparison between the two cases. However, this 
exercise is left for future work. In any case, given the close correspon-
dence between the estimated and true queue profiles, the quantitative 
results should be reasonably close.

To further test the methodology, additional scenarios are created 
by increasing the flow rate from 1,050 vph to 1,150 vph. The flow 
rate is kept constant throughout the simulation duration. Figures 7 
and 8 provide similar information as in Figures 5 and 6, respectively, 
except that the flow rate to create the scenarios is different. In each 
graph, the shock waves change slope because of the randomness in 
vehicle arrivals as they are generated in VISSIM based on the speci-
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FIGURE 6    Back of queue estimated with all vehicles and 5% probes (input volume 5 1,050 vph).
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fied input flow rate. As can be observed, in the first several cycles 
shown in Figures 7 and 8 there is a more substantial growth in the 
queue in comparison with Figures 5 and 6. In the scenario with 10% 
probes shown in Figure 7, at least one probe data point is observed 
in each cycle, whereas in the scenario with 5% probes in Figure 8  
two cycles do not have any probe vehicles. In both cases, the esti-
mated back-of-queue profiles based on the limited probe data follow 
the true profile reasonably well.

The results shown so far in Figures 5 through 8 are for a single 
random sample of probe vehicles at a given rate. To investigate 
the sample variability, Figure 9 shows the back-of-queue profiles 
estimated from 10 replicas generated at a 5% probe rate when the 
vehicle input is 1,150 vph. The critical points for the true profile are 
indicated by solid diamond symbols. Overall, most of the estimated 
profiles follow the true profile reasonably closely. In several of the 
replicas, there is some deviation from the true answer, especially 



170� Transportation Research Record 2315

180 270 360

Back of Queue_all All vehicles

Back of Queue_Probes Probes 10%

Shockwave lines_all

0

100

200

300

400

500

600

700

800

900

1000

450 540 630 720 810 900 990

D
is

ta
n

ce
 (

m
)

Time (sec)

FIGURE 7    Back of queue estimated with all vehicles and 10% probes (input volume 5 1,150 vph).
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FIGURE 8    Back of queue estimated with all vehicles and 5% probes (input volume 5 1,150 vph).

for Cycles 4 and 5, when there is a sudden jump in queue size. After 
examination of the data, it is observed that these differences tend 
to get larger when there are no probe data points near the critical 
points. For example, in Figure 8 relative to Q3 and Q5, probe obser-
vations are farther away from Q4. Consequently, Q4 is not estimated 
as accurately as Q3 and Q5. This is an important observation that 
may allow the modeler to assign reliability bounds to the accuracy 
of the predictions. More precisely, as the time separation between 
points PL

n and PF
n+1 (the last probe in cycle n and first probe in cycle  

n + 1) diminishes, the accuracy of the prediction for the critical point 
Qn increases.

To gain further insights into the impacts of probe vehicles on 
queue prediction accuracy, summary statistics corresponding to four 
probe levels (i.e., 5%, 10%, 15%, and 20%) are shown in Table 1 
for the scenario in which the input flow rate is set to 1,150 vph. The 
VISSIM model is run only once to generate vehicle trajectories. For 
each of the four levels, the probe vehicles are selected randomly 
among all vehicles to create 20 replicas. The back of the queue is  
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predicted for a total of 9 cycles in each replica. Therefore, there 
are 180 queue predictions (20 * 9 = 180) for each probe level. The 
queue is measured in meters from the stop bar (i.e., the vertical 
coordinate of point Qn measured from the stop bar) and is compared 
with the predicted value in each cycle in each replica. The error is 
found by subtracting the estimate from the actual and by dividing 
the result by the actual queue length. The average and standard devi-
ation of the error are shown in Table 1 along with the percentage of 
cycles (out of 180) that exhibit errors larger than ±10% and ±20%. 
Overall, it can be observed that error decreases as probe percentage 
increases, as expected. It is found that the predicted queue lengths 
are longer than the actual values since the average error is negative. 
This finding is perhaps an artifact of using a single VISSIM run 
to generate the input data. Additional runs at the same input flow 
level and at different flow levels will be conducted in the future to 
investigate the performance of the method more comprehensively.

Discussion of Results

As illustrated in the previous section, the proposed method is effec-
tive in estimating the queue dynamics from limited probe vehicle 
observations. The methodology can be particularly useful, even 
with a relatively small number of probe observations, to evaluate 

the performance of signalized intersections experiencing significant 
congestion or oversaturation. As probe vehicle data become avail-
able, it is important to develop similar methodologies to make the 
best use of such data.

The methodology shown here provides a much richer under-
standing of congestion and system performance than just the travel 
times and delays that are typically estimated from probe data. For 
example, the evolution of queues over time (e.g., peak hours) can 
be estimated from limited probe data. Since signal timing data (e.g., 
phase and cycle lengths) are collected by some traffic operations 
centers, the formulation presented here can be employed to make 
the best use of the probe data.

The methodology can be extended to real-time applications to pre-
dict the back of the queue at every cycle (e.g., at the end of the red 
phase), which can help better optimize signal timing. For example, 
predicting how far the queue will grow for each cycle (i.e., more pre-
cisely, the critical points Qn as described here) helps to determine the 
green time needed to clear the queue so that no residual queue is left 
in the next cycle. For example, by predicting Q6 in Figure 1 at time 
t = 540, one can calculate the length of the next green time needed 
to clear the queue. This calculation can be done by extrapolating the 
Q6 and R7 line until it intersects the stop bar line, that is, x = 1,000.

In addition, the work presented here can help with the devel-
opment of data collection policies from probe vehicles since the 
methodology shows what type of data is more useful than others to 
predict queues and consequently system performance. For example, 
in the context of this study, only event data when vehicles join the 
back of the queue for the first time are utilized. Even though vehi-
cles may make subsequent stops before departing at the stop bar 
(e.g., under oversaturated conditions), the data pertaining to these 
other events are not needed for the methods developed here.

Conclusions

A new methodology is presented to estimate the queue dynamics at 
signalized intersections based on probe vehicle data. The method-
ology is developed by relying on the LWR theory to determine the 
shock waves created by traffic signals. By analyzing the time–space 
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FIGURE 9    Ten back-of-queue profiles estimated with randomly selected 5% probes.

TABLE 1    Summary Statistics for Back-of-Queue Prediction 
at Different Probe Levels

Probe Avg SD of % 

Percentage of Samples with Errors 
Greater or Less Than Given Thresholds

Level (%) (%) Error <−10% >10% <−20% >20%

5 −4 10 20 6 6 2

10 −5   7 18 1 4 1

15 −2   6   8 3 0 1

20 −2   5   4 1 1 0

Note: Input volume = 1,150 vph. SD = standard deviation; avg = average.
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coordinates of probe vehicles in relation to these shock waves, a for-
mulation is developed to estimate the back of the queue. Among all 
probe vehicles observed in each cycle, data only from the first and 
last probe vehicles are used as input in the estimation. The meth-
odology does not require probe observations in every cycle. The 
application of the developed formulation is illustrated on the basis 
of data generated by microscopic simulation software. The results 
show that the method is effective in estimating the back of the queue 
under oversaturated conditions with a relatively small percentage of 
probe vehicles. The method produces reasonably accurate results 
even if some cycles do not contain any probe vehicle observations.

The work presented here can be extended to account for under-
saturated conditions. Additional testing can be conducted with field 
data (e.g., NGSIM data) to evaluate its performance under real-world 
conditions. The methodology can be revised for real-time prediction 
purposes. Last but not least, more complex models to account for 
vehicle platoons and complicated intersections with turn lanes can 
also be developed.
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