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ABSTRACT 1 

This paper is focused on developing an algorithm to estimate vehicle speed from accelerometer 2 

data generated by an onboard smartphone. The kinetic theory tells that the integration of 3 

acceleration gives the speed of a vehicle.  Thus, the integration of the acceleration values collected 4 

with the smartphone in the direction of motion would theoretically yield the speed. However, speed 5 

estimation by the integration of accelerometer data will not yield accurate results, since the 6 

accelerometer data in the direction of motion is not pure acceleration, but involves white noise, 7 

phone sensor bias, vibration, gravity component, and other effects.  To account for these sources 8 

of noise and error, a calibration method that can adjust the speed at certain times or points is 9 

needed. The exact times when the vehicle stops and starts are identified and used to calibrate the 10 

estimated speed. Based on the collected sample data, the proposed method yields that the estimated 11 

speed is on average within 10 mph of the actual speed with a lower margin at the street-level 12 

driving. This suggests that with more information to calibrate the speed, the model accuracy can 13 

be improved further.  14 

 15 
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INTRODUCTION 1 

The growth in mobile consumer devices, such as smartphones and tablets, has opened alternative 2 

ways to collect useful data to monitor traveler behavior and traffic flow. According to a February 3 

2018 survey by the Pew Research Center, 77% of Americans own a smartphone, up from 35% in 4 

2011 (1). Data aggregated from many mobile devices onboard vehicles as they navigate the 5 

transportation network provide a cost-effective opportunity to observe the performance of large-6 

scale transportation networks.  7 

Smartphone-based vehicular applications have been used in various fields such as traffic 8 

monitoring (2), accident detection (3), vehicle localization (2; 4; 5), and driving behavior analysis 9 

(6-8). For the most part, the use of smartphones as a mobile platform for sensing traffic conditions 10 

on the roadways has been primarily focused on the use of GPS data (9-11). Travel mode detection 11 

is a field where accelerometer and other sensors have been utilized for identifying the travel mode 12 

of the phone user. Travel modes include a wide variety of cases such as driving a car, riding a 13 

bicycle, taking a bus, walking, running, riding a metro, riding on light rail, and riding a train (12; 14 

13). Acceleration data are generally used together with GPS data in mode detection (14). Using 15 

different sensor data in combination with GPS, or in essence speed data, have proven to yield more 16 

accurate results in these studies.  17 

Here, the authors propose a speed estimation algorithm that uses smartphone accelerometer 18 

data. The kinetic theory tells that the integration of acceleration gives the speed of a vehicle.  Thus, 19 

the integration of the acceleration values collected with the smartphone in the direction of motion 20 

would theoretically yield the speed. However, speed estimation directly by integration of 21 

accelerometer data is not possible, since the accelerometer data in the direction of motion is not 22 

pure acceleration, but involves white noise, phone sensor bias, vibration, gravity component, and 23 

other effects. These get integrated together with the motion data and produce inaccurate results. 24 

However, the linear trend in estimated speed shows that the behavior is consistent as can be seen 25 

in FIGURE 4 and proves that the speed can be corrected at certain calibration points. The motion 26 

stop and start points of a vehicle can be used to calibrate the estimated speed. The authors’ previous 27 

research used smartphone accelerometer data and machine learning methods to come up with 28 

models that predict vehicle stop and start points with high accuracy (15; 16). 29 

 The focus of this paper is not on developing the best model to predict speed but rather 30 

building the groundwork for developing an algorithm that can reliably predict speed from 31 

smartphone sensory data. In addition, the research aims to predict speed without relying on GPS 32 

sensor within the smartphones for several reasons. GPS sensor has several limitations including 33 

low accuracy of GPS in urban areas with tall buildings because of the multi-path interference (17), 34 

low precision of GPS localization, and high-power consumption when the GPS is in use (18-21). 35 

Because of this high-power consumption, running an application that relies on the continuous use 36 

of GPS receiver depletes the phone battery quickly. However, the GPS can be turned on 37 

occasionally for a very short duration (e.g., one-two seconds) to locate the vehicle in a 38 

transportation network or a network link whereas the accelerometer data can be collected almost 39 

continuously to predict the stop and start points and to estimate the speed of a vehicle. The speed 40 

estimation using accelerometer provides an alternative to the generally applied case of using GPS. 41 

It can also be used to adjust and improve the GPS speed in cases of urban canyons and poor 42 

reception. 43 

This paper contributes to the literature by proposing a speed estimation algorithm that use 44 

accelerometer data. The stop and start points detected using accelerometer data are used to 45 

calibrate the estimated speed.  The usage of only the accelerometer sensor in the omnipresent 46 
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smartphones has advantages compared to speed estimation methods that rely on loop detectors 1 

(22-24), or cameras (25; 26) as it gets rid of the need of infrastructure investments or maintenance 2 

related issues. The Methodology Section describes the speed estimation algorithm and how it is 3 

implemented using the high-resolution accelerometer data. While the developed method is not yet 4 

tested on very large datasets from multiple smartphones, the testing is done on field data collected 5 

by an Android phone while driving on typical urban and suburban roads. The model can be easily 6 

extended and applied on different smartphones and vehicles.  7 

The organization of the paper is as follows: The next section describes the details of the 8 

data collected, followed by the methodology of speed estimation algorithm. This is followed by 9 

the application of the method on field data and presenting the results. Conclusions and potential 10 

improvements are presented at the end.  11 

DATA 12 

Field data are collected by a smartphone, and an on-board diagnostics (OBD) device. The OBD 13 

device used is capable of transmitting data via Bluetooth to the smartphone. An Android 14 

application is developed which records the data from the smartphone sensors, logs GPS readings 15 

and the speed data transmitted from the OBD. The GPS or OBD speed is the speed of the individual 16 

vehicle the phone is placed in. Each sensor has its own data sampling rate, and the app is set to log 17 

data from each sensor at the highest rate allowed. From the field data collected, it is found that the 18 

sampling rate for accelerometer sensor can be as low as 1 sample per second and as high as 238 19 

samples per second, with the majority at around 15 samples per second.  In general, the more the 20 

forces exerted on the phone, the higher the sensor activity is. The GPS and OBD data collection 21 

rate is 1 sample per second. To fix the time intervals between samples to a certain duration, these 22 

separate datasets from accelerometer, GPS, and OBD are first interpolated with a common start 23 

and end time and are resampled with a chosen sampling rate, and then appended together which 24 

yields the raw data. The rows represent each sample point, and the columns represent each sensory 25 

data of that sample. The OBD speed data are used as ground truth for model training and testing 26 

purposes. The data collection process involved normal driving on arterial streets with signalized 27 

intersections. The summary of training and testing trips are provided in TABLE 1 which includes 28 

the trip duration in minutes, number of time the vehicle stops in each trip, max speed in mph, trip 29 

distance in miles, and percentage of time the vehicle is in motion. These trips are from driving a 30 

Toyota Camry 2012 on arterials and city streets in Hampton Roads area of Virginia. The phone 31 

used throughout the data collection is a LG G4 android phone. This is important as each phone has 32 

a different sensor accuracy, sensitivity, and quality which might affect model accuracy if mixed 33 

with other phone types. 34 

 35 

TABLE 1. Aggregate summary of datasets used. 36 

 Dataset 
# of 

Trips 

Total 

Length(min) 

Standstill 

Duration(min) 

% Stop 

Duration 

# of 

Stops 

MaxSpeed 

(mph) 

AvgSpeed 

(mph) 

C
am

ry
 Train 10 204 34 17 74 74 30 

Val 10 182 18 10 36 82 40 

Test 20 488 77 16 137 78 33 
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METHODOLOGY  1 

The time series data generated by the smartphone sensors can be either processed in real-time (e.g., 2 

every second) or offline. The nature of the application dictates whether an online (real-time) or an 3 

offline algorithm is needed. For example, for assessing the performance of a signalized intersection 4 

for signal timing design and planning, offline analysis would be sufficient. While online vs. offline 5 

distinction is important for algorithm design, the focus of this paper is investigating the feasibility 6 

of estimating speed using accelerometer data, not necessarily designing a fast algorithm for online 7 

applications. However, the lessons learned, and the presented methods could be extended to online 8 

applications with some modifications to estimate speed and to detect when a vehicle stops and 9 

when it starts accelerating back to its desired speed from a stop.  10 

 11 

 12 

 13 
FIGURE 1 Smartphone sensor axes directions. 14 

 15 

Algorithm for Estimating Speed 16 

In this section, the process for estimating speed will be explained. One of the trips will be used to 17 

illustrate the case. The route taken during the trip and the vehicle’s speed are shown in FIGURE 18 

2. The trip was approximately 14 miles long and took about 22 minutes. The smartphone 19 

accelerometer sensor is a sensor with x, y, and z axes orthogonal to each other as shown in FIGURE 20 

1. To be able to estimate speed, the accelerometer measurements taken in the direction of motion 21 

is needed. During the trips, the phone is positioned on its side a little tilted towards its bottom, 22 

such that the y-axis of the phone is oriented along the direction of the movement of the vehicle. 23 

The y axis or the longitudinal direction is the one axis that is least affected by gravity. This can be 24 

seen by checking the acceleration measurements during the standstills of the vehicle. The y axis is 25 

around 0 m/s2, while x axis measures close to 8.0 m/s2, and the z axis is around 5.2 m/s2. This 26 

allows us to use the y axis acceleration obtained from the accelerometer to estimate speed. If the 27 

phone is positioned in the vehicle in a random orientation, orientation correction methods are 28 

needed (11; 27-29). The raw accelerometer values in the three axes logged from the smartphone, 29 

the magnitude of the acceleration 3D vector, and the GPS and OBD speeds of the vehicle are 30 

shown in FIGURE 3. 31 

 32 

 33 

 34 

 35 
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First, the kinematic equation shown in Eq. (1) is used to estimate speed. 1 

 𝑉𝑓 =  𝑉𝑖 + 𝑎∆𝑡 (1) 

Here, 2 

𝑉𝑓 Final velocity, 3 

𝑉𝑖 Initial velocity, 4 

𝑎 Acceleration, 5 

∆𝑡 Time interval. 6 

The frequency of interpolated data is held at a constant rate of 10Hz. Thus, the time interval will 7 

be 0.1 seconds between the measurements. Initial velocity is taken as the first speed value of the 8 

GPS, and then the vehicle speed at each instance is estimated recursively, based on Eq. (1).  9 

 10 

 11 
FIGURE 2 The route and speed of a Toyota Camry driven from Norfolk to Virginia Beach. 12 

 13 

 14 
FIGURE 3 Raw accelerometer, magnitude of acceleration, and speed of GPS and OBD. 15 

 16 
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 Normally, once this step is completed, one would expect that the speed estimate would be 1 

correct, based on the kinematic equation above. However, as mentioned before, because the phone 2 

is not oriented perfectly in the direction of motion, and other noise factors get accumulated as well 3 

during the integration process, the result is an upwardly (or downwardly) sloped monotonically 4 

increasing curve, as can be seen in FIGURE 4. As is evident, the monotonic increase can be 5 

identified by a slope within each motion and standstill segment. A segment is defined as the region 6 

between a stop and start point (standstill), or between a start and stop point (motion), which are 7 

shown in FIGURE 5. Here, the red vertical line signifies the stopping of the vehicle, while the 8 

green vertical line represents the start point. These points are referred to as change points. The 9 

state of each point i of a trip is denoted as a set Q containing values of ones and zeroes:   10 

 𝑄 = {1,0,0, … ,1,1,1,1, … ,1} (2) 

The zeros (0) denote vehicle standstill at each instance, and the ones (1) denote the vehicle 11 

being in motion. To detect the change points (the stop and start points of a vehicle), the algorithm 12 

shown below is applied: 13 

 𝑄𝑖 − 𝑄𝑖−1 ∈ {0,1, −1} (3) 

The difference between point i and point i-1 can only have three distinct values. “0” denotes 14 

no change in the state of the vehicle. “1” denotes that the vehicle was in standstill and started 15 

moving. The index of this point is stored in the Motion Start (M) set. A value of “-1” denotes that 16 

the vehicle was in motion and has stopped at this instance. The index of this point is stored in the 17 

Stop (S) set. 18 

 

𝑀 = {𝑖|𝑄𝑖 − 𝑄𝑖−1 = 1} 

𝑆 = {𝑖|𝑄𝑖 − 𝑄𝑖−1 = −1} 

𝐶 = 𝑆 ∪ 𝑀 

(4) 

Where 𝑖 = 1,2,3, … , |𝑄|. 19 

Thus, M is the set of indices when vehicle starts to move from a standstill, and S is the set 20 

of indices when the vehicle stops from being in motion. C is the sorted union of the stop and start 21 

change points in the trip, where Ck would represent one of the change points’ index. There are K 22 

+ 1 change points, including the very first and end points of a trip, and there are K segments. 23 

 24 

 25 
FIGURE 4 Speed estimations for each axis using the kinematic equation of 𝑽𝒇 =  𝑽𝒊 + 𝒂∆𝒕. 26 

 27 
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 Once the state detection phase is complete and the stop and start points are detected, the 1 

slope of each segment is computed, except for the first and last segments, unless these segments 2 

are a standstill. This is because, if the first and last segments start with motion, the calculated slope 3 

will be wrong, as is evident in FIGURE 5. The slope for each segment is calculated as the 4 

difference in speed between the last and first points of a segment, divided by the number of points 5 

in the segment. Since the change points represent the first point of each segment, the index of the 6 

last point of a segment is one less than the index of the next change point.  7 

 𝑚𝑘 =  (𝑉(𝐶𝑘+1 − 1) − 𝑉(𝐶𝑘))/(𝐶𝑘+1 − 𝐶𝑘) (5) 

Where, 8 

𝑚𝑘 Slope of segment k 9 

𝑉(𝐶𝑘) Speed at the index of the state change point Ck 10 

𝐶𝑘 The index of the change point k in the set C  11 

 12 

 Once the slope within each region is computed, the median is taken and the median 𝑚̃ is 13 

used in the rest of the computations. If so desired, the individual slope values can be used in each 14 

segment as well. However, this might be a little noisy. The stop and start points are used to calibrate 15 

the speed estimation at standstill segments, where the speed is set to zero. 16 

 𝑉 = {0|𝑄𝑖 = 0, 𝑓𝑜𝑟 𝑖 = 1,2,3, … , |𝑄|} (6) 

The speed at the beginning of each motion segment and the slope will be used to calibrate 17 

the estimated speed in the motion segments. The speed of each point is subtracted by the speed of 18 

the segment’s first point and the product of the slope and the number of points from the beginning 19 

of the segment. The remainder is the calibrated speed estimation, which is the top part of the black 20 

vertical line shown in FIGURE 5. Here, by getting rid of the VInitial and VSlope portions from Vi, the 21 

actual speed is left, which is denoted by VCalibrated. In a sense, each point in the motion segment is 22 

pulled down to the expected speed level. 23 

 𝑉 = {𝑉𝑖 − 𝑚̃(𝑖 − 𝐶𝑘) − 𝑉(𝐶𝑘)│𝑄𝑖 = 1, 𝑘 > 1} 

𝑉 = {𝑉𝑖 − 𝑚̃(𝑖 − 𝐶𝑘)│𝑄1 = 1, 𝑘 = 1 }  
(7) 

Where 𝑖 = 1,2,3, … , |𝑄|. 24 

The calibration phase finalizes the speed estimation process. The calibrated speed 25 

estimation for each axis is shown in FIGURE 6. Here, it becomes obvious that the motion direction 26 

of the vehicle aligns mostly with the Y axis of the phone, as the speed estimation obtained on this 27 

axis is the best among the three. It can be seen that the performance of the speed estimation is quite 28 

good and that it mimicked the actual speed very closely. 29 

 30 
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 1 
FIGURE 5 Calculating the slope and finding the beginning and ending speeds of segments. 2 

 3 

 4 
FIGURE 6 Calibrated speed estimation on each axis using the observed change points. 5 

EMPIRICAL ANALYSES AND RESULTS 6 

An important issue that needs to be mentioned is that, until now, the change points from observed 7 

set are used for calibration. The high accuracy of speed estimation using observed points proves 8 

that the speed estimation algorithm is a feasible method. However, the real performance of the 9 

speed estimation process can be obtained by testing with predicted change points. Here, the 10 

estimated speed will be calibrated by using predicted stop and start points which are obtained by 11 

implementing machine learning techniques in which the smartphone accelerometer data is utilized 12 

(15; 16), making the whole algorithm purely accelerometer dependent, without any extra 13 

knowledge. 14 

 

V(Ck) 

V(Ck+1) 

Standstill nij 

Vi 

Ck Ck+1 

VInitial 

VSlope 

VCalibrated 

mk 

mk2 
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The estimated speed obtained by using the predicted change points is shown in FIGURE 1 

7. Visually, it can be deduced that the method still performs very well, with some overestimation 2 

between the minutes 6 and 14, in which the vehicle is travelling on the freeway. Some other 3 

dynamics might be causing this overestimation. The RMSE of estimated speed with respect to 4 

GPS speed using the observed and predicted points are shown in TABLE 2. As can be seen, both 5 

achieve good accuracy, with an RMSE of ~6, meaning approximately 6 mph difference in speed 6 

compared to the actual one. Using the predicted points is not very different than using the observed 7 

ones, and only degrades the accuracy by ~1.2 mph.  8 

 9 
FIGURE 7 Calibrated speed estimation on each axis using the predicted change points. 10 

 11 

The mean RMSE of speed estimation algorithm applied to all the test trips is provided on 12 

the right of TABLE 2. The stop and start point predictions of fifteen of the test trips are shown in 13 

FIGURE 8.  Overall accuracy decreased when many trips are considered. However, the speed 14 

estimation whereby calibration is done with the predicted points still performed close to using the 15 

observed points, with slightly more error.  16 

 17 

TABLE 2. The RMSE of estimated speed w.r.t. GPS speed. 18 

 Single Trip RMSE Testing Set Mean RMSE 

Observed Change Points 5.49 9.78 

Predicted Change Points 6.68 11.16 

 19 
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 1 
FIGURE 8 Camry stop and start prediction of test trips. Red: Prediction, Green: Observed 2 

 3 

 4 
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CONCLUSIONS 1 

This paper demonstrates how speed can be estimated from smartphone accelerometer data and 2 

calibrated by using the stop and start points of a vehicle. The integration of the acceleration values 3 

collected with the smartphone in the direction of motion would theoretically yield the speed. 4 

However, integration of accelerometer data in the direction of motion also accumulates other 5 

components such as white noise, phone sensor bias, vibration, gravity component, and other 6 

effects. However, the linear trend in estimated speed proves that the speed can be corrected at some 7 

calibration points. The stop and start points of a vehicle provide the necessary calibration points. 8 

The speed estimation by using only accelerometer data and the predicted stop and start points used 9 

for calibration performs very well on surface street driving and slightly less so on highway driving. 10 

Based on the collected sample data, the proposed method yields that the estimated speed is on 11 

average within 10 mph of the actual speed. The main factor here is the frequency of stops as they 12 

are used for calibration. This suggests using more information to calibrate the speed can improve 13 

the model accuracy. 14 

Some alternatives for improvement include the use of heuristic methods, such as increasing 15 

or decreasing the estimated speed by a certain amount if it under or overestimates consistently in 16 

certain type of segments. One such approach could be defined for segments over highways, which 17 

have higher speeds for longer durations. A better approach could be to make use of other motion 18 

information such as going over potholes, whereby the accelerometer signatures created at the front 19 

and back tires can be used to further calibrate the speed. Here, the phone was oriented in a way 20 

such that the longitudinal direction would face the direction of motion. However, this is not always 21 

possible. Making use of the gyroscope and re-orienting the mobile device to align with the vehicle 22 

orientation can also be done to further improve the speed estimation.  23 

The importance of the model presented in the paper is to show that with minimal 24 

information and only single sensory data the speed estimation can still be reliably done and can be 25 

an alternative to the generally applied case of using GPS which has its own disadvantages. 26 

However, it should be noted that speed estimation using accelerometer is done using a very noisy 27 

data source and the re-orientation of a phone might add to the problem as well. The speed 28 

estimation algorithm presented in this paper can serve to correct and supplement the GPS speed in 29 

cases of urban canyons and poor reception. 30 
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